LE PLANEUR

POLAIRES DES VITESSES



Introduction

La polaire des vitesses est une courbe qui montre l'évolution du taux de chute du planeur en fonction de sa vitesse. À ne pas confondre avec la polaire aérodynamique (polaire Eiffel) étudiée dans la page Mécanique du vol 1ère partie.

Polaires des vitesses en air calme

La polaire est une courbe assez plate donc peu lisible. Pour augmenter cette lisibilité l'axe des Vz a été dilaté. L'angle de plané sur les courbes n'est donc pas représentatif. L'angle réel doit être évalué en fonction des autres données.
Attention : les courbes et les chiffres ci-dessous sont donnés à titre d'exemple et ne correspondent à aucunes données réelles.

Polaire et taux de chute

Point A : vitesse de décrochage appelée VS1. Ci-dessous elle correspond à 63km/h.
Point B : taux de chute minimum d'un planeur Vz mini et sa vitesse correspondante peuvent être repérés en traçant une parallèle horizontale à l'axe des vitesses. Dans l'exemple ci-dessous le taux chute mini est de 0,61m/s pour une vitesse de 90km/h en air calme.
Pour toutes autres vitesses (plus faibles ou plus fortes) le taux de chute sera supérieur au taux de chute mini.

CourbeVzmini

En traçant une parallèle à l'axe des vitesses qui coupe à la polaire en deux points on trouve deux vitesses qui ont le même taux de chute.

CourbeVZDouble

La vitese du taux chute minimum soit 90km/h ci-dessous, sépare en deux le domaine de vol.
À gauche c'est le domaine de vol aux grands angles d'incidence appelé second régime,.
Quand Vi diminue, Vz augmente, on parle alors de régime instable.
À droite c'est le domaine de vol aux "petits" angles d'incidence appelé premier régime,.
Quand Vi diminue, Vz diminue et le vol est dit stable.

CourbeRegimeSecPre

Polaire et finesse sans vent

La meilleure vitesse de plané est la vitesse à laquelle, le planeur atteint sa meilleure finesse. La finesse maximale d'un planeur fmax et sa vitesse correspondante peuvent être repérées en traçant une droite issue du point 0 qui est tangentielle à la courbe. La finesse maximale correspond à la pente de descente la plus faible. Elle est représentée par  Lettre Gamma mini.
En augmentant la pente de descente, la fmax diminue. En air calme, il n'y a donc qu'un seul angle de plané qui correspond à la fmax

CourbeFinesseMax

En traçant une droite issue du point 0 et sécante à la polaire on trouve deux vitesses qui ont la même finesse. L'une V1 au second régime de vol, et l'autre V2 au premier régime de vol.

CourbeFinesseDouble

La finesse peut également exprimée par :

FinesseDessin
Finesse distance hauteur

Influence de la charge alaire

Augmenter la masse d'un planeur en ajoutant du lest d'eau, par exemple, déplace la polaire des vitesses vers le bas et vers la droite. Le taux de chute minimal est donc augmenté, de sorte que, comme on pouvait s'y attendre, le poids supplémentaire rend plus difficile la montée en thermique. Cependant, la meilleure finesse reste à peu près la même, mais se produit maintenant à une vitesse plus élevée. Par conséquent, si les thermiques sont assez forts pour compenser les mauvaises performances en montée, alors le lest d'eau permet une croisière interthermique plus rapide. Il en résulte de plus grandes distances parcourues par intervalle de temps.
Ci-dessous on constate qu'à partir de 125km/h le planeur chargé chute moins.

CourbeChargeAlaire

Polaires des vitesses en air animé

La masse d'air est rarement calme, le planeur se déplace généralement dans des masses d'air animées de mouvements ascendants ou descendants.

Polaire avec mouvement vertical descendant

Dans l'exemple ci-dessous le planeur se retrouve dans une masse d'air qui chute à - 2 m/s. On trace alors une deuxiéme polaire, parallèle à la première en la déplaçant de - 2 m/s vers le bas.
Sur cette nouvelle courbe on trace une droite issue du point 0 tangentant la courbe. Le point de tangente correspond à la nouvelle finesse max avec sa vitesse.
Attention : le taux de chute est le taux lu au variomètre Vzd
Nous aurons:
   Vzd = Vzp + Vzw ;
   Vzd = taux de chute total ou taux indiqué par le variomètre ;
   Vzp = taux de chute propre du planeur ;
   Vzw = mouvement ascendant ou descendant de la masse d'air ;

CourbeFinesseDescent

Il est possible de calculer cette nouvelle finesse :
   Vitesse idiquée 170km/h soit 47m/s
   Taux chute du planeur Vzp à Vi 170km/h est de 1,6m/s
   Mouvement descendant Vzw = 2m/s soit une Vzd = 3,6m/s
   La finesse est de : ƒ = 47 / 3,6 = 13

Polaire avec mouvement vertical ascendant

Le planeur traverse maintenant une masse d'air ascendante de + 2,5 m/s. On trace une deuxiéme polaire, parallèle à la première en la déplaçant de - 2,5 m/s vers le haut.
Sur cette nouvelle courbe on trace une droite issue du point 0 tangentant la courbe. Le point de tangente correspond à la nouvelle finesse max avec sa vitesse.

CourbeFinesseMonte

Il existe une méthode bien plus simple pour faciliter la construction de la courbe Mac Cready. Il suffit de déplacer l'origine de la droite tangentant la courbe vers le haut pour les valeurs négatives de Vzw et vers le bas pour les valeurs positives de Vzw. Le point de tangente déterminera à chaque fois le point de la ƒmax.

CourbeFinesseInverse

Polaire cas particulier

Lorsque Vzw est égale à Vzp, la Vzd est égale à 0 et la ƒmax et la Vzmini sont confondues.

CourbeFinesseCas

Influence du rayon de virage sur le taux de chute

En vol rectiligne la Rz (portance) ne dépend que de la vitesse de vol, mais en virage elle dépend de deux paramétres : la vitesse de vol et le rayon de virage ou de l'inclaison en virage. Voir Vol en virage horizontal
Le taux de chute augmente avec la diminution du rayon de virage donc avec l'augmentation de l'inclinaison, et la vitesse de la Vzmini augmente également.
Ci-dessous les polaires de vitesses pour plusieurs rayons de virage avec volets à 0°.

CourbeRayon

Calcul du rayon de virage

Le rayon mesure la taille du cercle décrit par un planeur pour une inclinaison et une vitesse données. Le planeur étant animé d'un mouvement circulaire uniforme, nous pouvons calculer son rayon de virage.
 Rayon de virage :    Virage Equation rayon
On peut en déduire que le rayon de virage est fonction de la vitesse et de l'inclinaison.
R    rayon en mètres
V    en mètres par secondes
g    constante de la gravitation ( 9,81 m/s en France)
Ø    inclinaison en degrès de l'avion.
Exemple 1:
- vitesse 90 Km soit 25 m/s
- inclinaison 30° soit tangente 0,577
- Rayon = 252 / 9,81 * 0,577 = 110 m
Exemple 2:
- vitesse 110 Km soit 30,5 m/s
- inclinaison 30° soit tangente 0,577
- Rayon = 252 / 9,81 * 0,577 = 164 m
Exemple 3:
- vitesse 90 Km soit 25 m/s
- inclinaison 45° soit tangente 1
- Rayon = 252 / 9,81 * 1 = 63 m

Polaire des vitesses en virage

Traçage des courbes de vitesses pour plusieurs inclinaisons.
- la vitesse minimale augmente avec l'inclinaison ;
- Le taux de chute minimal augmente, et la vitesse de chute mini augmente également ;
- la vitesse de la finesse max augmente et la finesse max diminue ( ligne marron en pointillé) ;
On constate sur le schéma ci-dessous qu'à 60° d'inclinaison il faut spiraler à 124km/h pour être au taux de chute minimal de 1,70m/s.

CourbeVirage

Les polaires de vol ne sont valable que pour une "aile propre". Les insectes et les gouttes de pluie sur l'aile diminuent les performances et la maniabilité notament pendant la phase d'atterrissage.

Couronne MacCready

Bien que ces polaires soient très utiles, il est impossible à un pilote de planeur de les consulter en vol, même si celles-ci sont reliées dans un petit classeur.
Un ingénieur américain Paul B. MacCready spécialisé dans l'aéronautique et détenteur de plusieurs records d'altitude en 1947, puis champion international en France en 1956, a construit un anneau (ou couronne) installé autour du variomètre afin de pouvoir déterminer en vol à quelle vitesse il faut voler pour garder en permanence la meilleure finesse en fonction du taux de chute et du vent. Cette couronne fixée sur le variomètre est rotative et manipulable par le pilote, elle est spécifique à un type de planeur et ne peut pas être utilisée sur un autre type. Les vitesses qui y sont inscrites sont celles de la polaire.
Ci-dessous un variomètre avec une couronne MacCready.

Vario MacCready

Création de la couronne MacCready

Nous avons vu que dans une masse d'air descendante on trace une deuxiéme polaire, parallèle à la première en la déplaçant vers le bas, et dans une masse d'air ascendante on trace une autre polaire, parallèle à la première en la déplaçant vers le haut.
Rappel :
   Vzd = Vzp + Vzw ;
   Vzd = taux de chute total ou taux indiqué par le variomètre ;
   Vzp = taux de chute propre du planeur ;
   Vzw = mouvement ascendant ou descendant de la masse d'air ;
1ère méthode
En décalant la polaire des vitesses en air calme verticalement de la valeur de Vzd (taux de chute lu au variomètre), on obtient une famille de polaires décalées vers le haut et vers le bas. En traçant pour chaque polaire des vitesses une droite (en vert) issue du point 0 qui est tangentielle à la courbe, on détermine le point de la meilleure finesse pour chaque Vzd. Puis en reliant tous les points on constitue la courbe MacCready (ligne rouge).

Courbe MacCready

2ème méthode
Cette méthode évite de décaler la polaire vers le haut ou vers le bas et facilite la construction de la courbe MacCready. On décale l'origne des tangentes vers le haut (par rapport à zéro), pour les valeurs négatives de Vzw et vers le bas pour les valeurs positives Vzw. Ensuite en traçant une droite (en vert) issue du point Vzw qui tangente la courbe, on détermine le point de la meilleure finesse. Tous ces points sont alors positionnés sur la même polaire. Il suffit ensuite à partir de ces points de tracer une droite vers le haut ou vers le bas de la valeur de la Vzw. En réunissant l'extrémité de toutes ces droites issues des points tangentiels on obtient la courbe MacCready.
Il est évident que la courbe MacCready obtenue par l'une ou l'autre de ces deux méthodes est identique.

Courbe CreadyMac

Graduation de la couronne MacCready

On reporte les vitesses trouvées sur l'anneau MacCready du variomètre en face des taux de chute.

Courbes ci-dessus on constate dans une masse d'air montante:
Pour une Vzd de + 1 m/s nous avons une Vi de 85 Km/h
On inscrit 85 en face de + 1
 CourbeVarioNegatif
Courbes ci-dessus on constate dans une masse d'air descendante:
Pour une Vzd de -2 m/s nous avons une Vi de 150 Km/h
On inscrit donc 150 en face de - 2
 CourbeVarioNegatif
Il suffit ensuite de reporter toutes ces vitesses sur l'anneau MacCready du variomètre en face des taux de chute.
Remarque : si Vzw est égale à Vzd le vario sera à 0 et la Vi de fmax = Vi de chute mini
 CourbeVarioSept

Polaire des vitesses avec vent

Vent de face

Lorsque le vent est de face la vitesse sol diminue, on déplace alors l'origine 0' vers la droite de la valeur du vent. De cette nouvelle origine on trace une droite tangentant la polaire qui détermine le point de la ƒmax en air calme.
Dans l'exemple ci-dessous :
   - la vitesse du vent de face est de 55km/h ;
   - la Vi de ƒmax est de 130km/h soit une vitesse sol de 75km/h ou 20,8m/s ;
   - taux de chute 0,95m/s ;
   - la ƒmax sol = 20,8/0,95 = 22
On constate que le taux de chute en équivalent sans vent est de 0,75m/s à comparer avec le taux de chute de la courbe ƒmax sans vent.

CourbeFinesseVentFace

Utilisation de la couronne MacCready
On constate sur la courbe ci-dessus que :
- la vitesse de ƒmax augmente;
- la ƒmax sol a fortement diminuée. Elle est de 22 contre 42 sans vent ;
- l'équivalent sans vent est de - 0,75 m/s.

Tab Vent effectif

Dans notre cas la ƒmax sans vent est de 42 et le vent de face de 55 km/h , on décalera la couronne MacCready d'un équivalent 1 m/s vers les varios positifs.

Vent arrière

Lorsque le vent est arrière la vitesse sol augmente, comme ci-dessus on déplace alors l'origine 0' mais vers la gauche de la valeur du vent. De cette nouvelle origine on trace une droite tangentant la polaire qui détermine le point de la ƒmax en air calme.
Dans l'exemple ci-dessous :
   - la vitese du vent arrière est de 50km/h ;
   - la Vi de ƒmax est de 100km/h soit une vitesse sol de 150km/h ou 41,6m/s ;
   - taux de chute 0,70m/s ;
   - la ƒmax sol = 41,6/0,7 = 59

CourbeFinesseVentarrière

Utilisation de la couronne MacCready
On constate sur la courbe ci-dessus que :
- la vitesse de ƒmax diminue ;
- la ƒmax sol a considérablement augmentée. Elle est de 59 contre 42 sans vent ;
- l'équivalent sans vent est de - 0,25 m/s environ donc négligeable. Dans les transitions vent arrière à finesse max la couronne MacCready sera maintenue sur zéro.

Résumé

- sans vent : calage du MacCready à zéro ;
- avec vent de face : calage du MacCready de l'équivalent de vent ;
- avec vent arrière : calage du MacCready à zéro.
Ce principe de réglage de la couronne de MacCready n'est valable que pour une masse d'air en déplacement horizontal, sans mouvements verticaux.

Image Suite